Identifying causes of high E. coli concentrations at public beaches on Pike and Center lakes in Kosciusko County, Ind.

Anna D. Burke ${ }^{\text {a }}$, Miles Barber ${ }^{\text {b }}$, Nathan S. Bosch ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Center for Lakes \& Streams, Grace College, Winona Lake, IN 46590, USA. burkead@grace.edu, Phone: (574)372-5100x6446, Fax: (574)372-5124
${ }^{\mathrm{b}}$ Center for Lakes \& Streams, Grace College, Winona Lake, IN 46590, USA. barberma@grace.edu
${ }^{\text {c }}$ Center for Lakes \& Streams, Grace College, Winona Lake, IN 46590, USA. boschns@grace.edu, Phone: (574)372-5100x6445, Fax: (574)372-5124

* Corresponding author


## Executive Summary

Local water resources influence human health. In 2013, the Center for Lakes \& Streams, with funding from the K21 Health Foundation, private donors, and Grace College, investigated causes of elevated $E$. coli levels in some of Kosciusko County's most problematic public swimming beaches. E. coli is a bacterium that has been monitored in seven lakes with public swimming beaches by the Kosciusko County Health Department (KCHD) since 1995 due to its role in several human diseases. In a study from 2012, the center analyzed historical data collected by KCHD and found that the public swimming beaches at Pike and Center lakes were shown to have unsafe E. coli levels in $41 \%$ and $32 \%$ of samples collected, respectively. The current study is a follow-up investigation to discover the cause of these elevated $E$. coli levels and provide recommendations to lower them. The study revealed that precipitation events led to higher E. coli levels, indicating $E$. coli was washing in from outside of the lakes. This was exaggerated by storm drain flow at Center Lake. Locational sampling results showed higher E. coli levels on the left side of piers and in vertex areas. Elevated levels on the left side of piers is even more of a health concern because at each beach that is where most people swim. Elevated levels in the vertex areas indicates stagnant water trapped there acts as a collecting area for E. coli. Sampling also showed higher E. coli levels at Center Lake as samples were over the acceptable limit $51 \%$ of time. South and west winds resulted in higher $E$. coli in vertex sites, once again indicating stagnant water in these areas. Bird counts showed higher gull counts at Center over study and molecular source tracking confirmed gulls as likely cause of high E. coli levels at Center. The resulting recommendations include improving stormwater quality drastically or diverting drain to another location at Center Lake; creating flow-through capacity for piers at both lakes; exploring gull population control measures at Center Lake; and exploring alternative beach raking methods to remove waterfowl waste at both lakes.

## Introduction

Kosciusko County has more than 10,700 acres of surface water. It is home to more than 100 natural lakes, including the largest (Lake Wawasee) and deepest (Lake Tippecanoe) natural lakes in Indiana. More than 77,000 residents and thousands more vacationers rely on our local water resources for drinking water, water sports, fishing, and swimming. Our local water resources are vital to our health, economy, and standard of living. Yet one of our county's strengths could also produce hidden health risks in the form of dangerous levels of E. coli at two of our county's most utilized public swimming beaches.

Previous research partially funded by the K21 Health Foundation has shown that over 15 years of weekly sampling, the swimming areas at Pike and Center lakes were shown to have unsafe E. coli levels in $41 \%$ and $32 \%$ of samples collected, respectively (Center for Lakes \& Streams, 2012). Pike and Center lakes even had annual average concentrations over the beach closure threshold of $235 \mathrm{cfu} / 100 \mathrm{~mL}$ for several years. In addition, levels were shown to be the highest on average during July and August when the beaches are the busiest with swimmers.

The consistently high E. coli levels at two of Kosciusko County's most popular swimming beaches was considered an unacceptable human health threat. Thus, the current project aimed to identify the cause(s) of these high levels such that specific recommendations for fixing this problem could be made at the conclusion of this project. Based on previous work by McLellan and Salmore (2003), this study focused on a spatial assessment of bacterial water quality in order to determine the points of entry of the fecal pollution that causes E. coli. In addition, fecal pollution was analyzed to determine the source species.

## Methods

## Study Area

Center Lake and Pike Lake are two bodies of water located within the city limits of Warsaw, Indiana (Figure 1). Both lakes exist in an urban setting and are used frequently by the public for low speed boating, fishing, and swimming. Each lake has a public swimming beach and adjacent pier.

Center Lake has a surface area of 120 acres, a watershed area of 9,611 acres, and a maximum depth of 42 feet (Center for Lakes and Streams, 2014a). The lake bottom consists of gravel, sand, muck and marl. There are two outlets, Lones Ditch and Walnut Creek. The one inlet originates from a spring-fed underground tile drainage system
from Pike Lake. Center Lake is surrounded by city parks, residential housing, and commercial businesses.

Pike Lake has a surface area of 230 acres, a watershed area of 25,700 acres, and a maximum depth of 35 feet (Center for Lakes and Streams, 2014b). The lake bottom consists of muck, marl, and clay. The one outlet flows to Little Pike Lake. There are two inlets, Deeds Creek and Beyer Ditch. Pike Lake is surrounded by city parks, residential housing, a campground, and a wetland.

## Field Sampling

Water samples were collected by securing a sample bottle to the end of a long reach extension tool so the bottle could be easily submerged without contamination. Sampling occurred in the area around the piers. Three samples were taken on the left side of a pier (sites 1, 3 and 5) and three samples were taken on the right side (sites 2, 4 and 6) (Figures 2 and 3 ). Sites were designated with a " $C$ " or " $P$ " depending on whether they referred to the Center Lake pier or Pike Lake pier, respectively.

Site 1 corresponds to the intersection, or vertex, of the pier and the beach on the left side of the pier. Site 2 corresponds to the vertex on the right side of the pier. Samples at these sites were taken at a water depth of 0.3 meters.

Site 3 corresponds to the left side of the pier, about halfway along the length of the pier. Site 4 corresponds to the site directly across from site 2 , but on the right side of the pier. Samples at these sites were collected at a water depth of 0.6 meters below the water surface, or halfway between the water surface and lake bottom.

Sites 5 and 6 were located off the beach rather than the pier. Samples at these sites were collected in 0.3 meters of water. In order to form an equilateral triangle for the sampling area, sites 5 and 6 were taken the same distance along the beach from the pier, as sites 3 and 4 were taken along the pier from the beach. The distances used for sites 3 and 5 were measured independently of sites 4 and 6 because the water level is lower on the left side of the pier at Center and lower on the right side of the pier at Pike. This means that the sampling sites on those respective sides cover a slightly larger area than the sampling sites on the opposite sides of the piers.

In order to assess the influence of the drainage pipe located at site C2, samples were collected at the opening of the drain within 15-30 minutes of a significant rain event that appeared to cause flow within the pipe.

The water temperature and pH of each sampling site was measured and recorded using a Hydrolab Quanta meter. Weather data was collected at both the time of sampling and later summarized with total daily averages from Weather Underground (Weather Underground, 2014). Data collected during sampling was measured with a Speedtech

Skymaster anemometer to measure air temperature and maximum and average wind speed. Using a compass, instantaneous wind direction was estimated as well. General weather conditions were also noted. Collecting weather data at the time of sampling did not begin until September 30, 2013. Prior to that daily averages were used.

Any activity or conditions that may have affected the samples were also recorded. This included large populations of birds on the beaches, evidence of a significant bird presence on the beach, dead fish or other debris floating in the water, afternoon thunderstorms, or children swimming near the sampling sites.

Swimmer data was collected by the Warsaw Parks and Recreation Department (WPRD) lifeguards. Lifeguards recorded head counts at the start of each hour for a seven-hour period each day. Data was collected for the dates between September 7, 2013 and September 28, 2013. Days with partial data were completed using estimates based on proportions from days with complete data. Because samples were taken in the morning before swimmers got to the lakes, swimmer data was analyzed by looking at the relationship between the number of swimming hours and the E. coli concentrations measured the following day.

Bird counts were taken by both WPRD staff and center staff. WPRD staff counted the number of geese, ducks, and gulls observed in the morning at the city parks around the lakes. Only the counts taken near the sampling sites were used for data analysis. The number and types of birds were also recorded by the center staff, making special note of birds in the water, on the pier or beaches, and which respective side of the pier the birds were located. Bird data was analyzed by examining the influence of bird counts on E. coli concentrations for the day of sampling and the following day.

## Lab Analysis

Following collection, all samples were placed in a cooler and transported directly to the Warsaw Wastewater Treatment Department (WWTD) lab. Samples were analyzed for E. coli concentrations and recorded as MPN/100 ml (most probable number of viable coliform cells per 100 ml sample).

WWTD also prepared and froze DNA samples for delivery to the Source Molecular lab to identify whether humans, canines, or waterfowl were the primary source of the E. coli. In order to validate the DNA methods, positive fecal controls were also collected and delivered to Source Molecular. The three different types of bird samples (goose, duck, and gull) were obtained from local bird populations at the sampling sites, the human control was taken from the raw sewage line at WWTD, and a local animal shelter provided the canine controls. Source Molecular labs also ran the samples along with a positive control containing the desired genomic DNA and PCR-grade water for the negative control (Source Molecular Corporation, 2012).

## Results

## Precipitation

E. coli concentration averages for the lakes and sampling sites were calculated for dry days and rainy days. Dry days had a total average E. coli concentration of 192 MPN/100 ml , while samples taken on rainy days had a total average of $300 \mathrm{MPN} / 100 \mathrm{ml}$-about 100 MPN/100 ml higher (Figure 4 and Table 1).

## Drain Influence

The effects of the drain on site C2 were evaluated by taking total averages at site C2 for dry days and comparing them to averages taken during a rain event. During rain events, C2 had an average of 434 MPN/100 ml, while the averages for site C2 dry days were 215 MPN/100 ml (Table 1). While the averages between dry days and rainy days had a difference around $100 \mathrm{MPN} / 100 \mathrm{ml}$ for all other sites, C2 had twice the average E. coli concentrations between dry days and rainy days.

## Location

An average $E$. coli concentration was taken for each sampling site at both lakes for all days (Table 2) and dry days only (Table 3). The highest concentrations for all sites were found in the vertex, where the pier and the beach intersect. Higher average concentrations were found closer to the shore and the lowest concentrations on both lakes were found at sites 3 and 4, the furthest sites from the shore. At averages of 262 MPN/ 100 ml , concentrations near the pier and close to the shore were greater than concentrations close to the shore but away from the pier. As a result, concentrations increase according to increasing proximity to the shore and increasing proximity to the pier (Table 3).

At Center, the average of all sites on the left side of the pier was $269 \mathrm{MPN} / 100 \mathrm{ml}$ and was 193 MPN/100 ml on the right side. At Pike, the left side was 192 MPN/100 ml and the right was 222 MPN/ 100 ml (Table 3). The higher concentration side corresponded to the side with the smaller sampling area for this dry weather subset of the data collected.

## Water Temperature

E. coli concentrations were compared to water temperature and resulted in no correlation ( $r^{2}=0.08$ ) (Figure 5).

## Water pH

E. coli concentrations were compared to water pH and resulted in no correlation ( $r^{2}=0.03$ ) (Figure 6).

## Wind Direction

Regardless of precipitation, there were higher E. coli concentrations observed at Center Lake with southwest and northwest winds. Similarly, Pike Lake experienced higher levels with south winds. Concentrations were consistently higher on the left side of the pier at Center Lake, especially with winds containing some western component (Table 4).

## Wind Speed

Center Lake was most susceptible to high $E$. coli concentrations at wind speeds between 0-5 mph, while Pike Lake was most susceptible to high concentrations between 2-7 mph (Figures 7A and 7B).

## Swimming Activity

Swimming activity estimates for each side of the pier were averaged for each lake (Table 5). Both lakes showed over 10x more swimming activity on the left side of the pier compared to the right. Center Lake had over twice as much swimming activity overall compared to Pike Lake. These data were then compared to corresponding E. coli concentrations at each lake for each day data was available. This resulted in weak positive correlations between swimmer hours and $E$. coli concentrations. The strongest of these correlations ( $r^{2}=0.34$ ) was for the right side of the Center Lake pier (Figure 8).

## Water Fowl Counts

Comparisons of bird counts to E. coli concentrations were largely inconclusive with no obvious correlations. However, the two lakes differed substantially with the relative amount of each water fowl category (ducks, geese, gulls) as well as how bird counts and E. coli concentrations changed over the study period (Figures 9 and 10). For both lakes, duck and geese counts generally decreased over study period while gull counts increased. There were about 70\% more birds overall at Center Lake than Pike Lake. Ducks and geese made up relatively more of Pike Lake total bird counts, while gulls were the dominant bird type at Center Lake.

## Microbial Source Tracking

Samples were tested for human, dog, goose, duck, and gull gene biomarkers. The only marker to come back positive was for gulls (Table 6). There were six samples positive for gull and all were at Center Lake with four of them at site C1 (left side of pier at vertex) and two of them at drain outflow sites during precipitation event. The highest
amount was quantified at site C 1 on August 28 which had no preceding precipitation, but did have a reported stagnant film on top of the water the previous day with westerly winds.

## Discussion

## Precipitation

Rainy days had average $E$. coli concentrations about $100 \mathrm{MPN} / 100 \mathrm{ml}$ higher than average concentrations during dry days. The precipitation is likely washing E. coli into the lakes over the land or through the stormwater sewer.

## Location

The location results showed that concentrations increased in proximity to the pier. Furthermore, concentrations are higher near the pier at the vertex and closer to the shore. This may be attributed to wind causing pollutants to gather and collect against the pier or the pier creating pockets of stagnant water where E. coli can gather and collect even in the absence of wind. Either way, the problem is likely caused by an inability of the water to circulate through the pier and out into the rest of the lake. This creates high concentrations of $E$. coli that may increase with precipitation, more swimmers and more bird activity. The total average concentrations were higher on Center's left side and Pike's right side. Due to the different beach extent on each side, these sides are smaller in sampled area in comparison to the opposite side of the pier. This also supports the theory that the concentrations increase in proximity to the pier. Interestingly, one of the major distinctions between Center and Pike lakes and the other public swimming beaches in Kosciusko County lakes that were not as prone to E. coli issues is the presence of piers at only Pike and Center lake beaches, which only further suggests the role piers likely play.

## Swimmers

The results indicated that $E$. coli concentrations may increase with swimmer activity. This is likely related to swimmer activity stirring up dirt and muck.

## Birds

Sampling at the drain at Center Lake indicated that there was gull fecal matter present at that site. There was also noticeable stormwater runoff entering the lake from the pavilion. So gull fecal pollution could be washing off both the pier and the pavilion roof and into the water.

## Future Work

Now that the causes of elevated E. coli levels at Center and Pike lakes have been narrowed down, stakeholders will be notified of the results and engaged in a dialogue about appropriate action. The general public will be notified of the results through a series of press releases. If some or all of the recommendations in this report are implemented, it would be beneficial to conduct a follow-up study to confirm improvements.

## Conclusion

The study revealed that precipitation events led to higher E. coli levels, indicating E. coli was washing in from outside of the lakes. This was exaggerated by storm drain flow at Center Lake. Locational sampling results showed higher E. coli levels on the left side of piers and in vertex areas. Elevated levels on the left side of piers is even more of a health concern because that is where most people swim at each of these beaches. Elevated levels in the vertex areas indicates stagnant water trapped there acts as a collecting area for E. coli. Sampling also showed higher E. coli levels at Center Lake as samples were over the acceptable limit $51 \%$ of time. South and west winds resulted in higher $E$. coli in vertex sites, once again indicating stagnant water in these areas. Bird counts showed higher gull counts at Center over study and molecular source tracking confirmed gulls as likely cause of high E. coli levels at Center. The resulting recommendations include improving stormwater quality drastically or diverting drain to another location at Center Lake; creating flow-through capacity for piers at both lakes; exploring gull population control measures at Center Lake; and exploring alternative beach raking methods to remove waterfowl waste at both lakes.

## References

Bauman, Robert W. 2007. Microbiology: With Diseases by Taxonomy. Glenview, IL: Pearson Education: 168-169.

Center for Lakes \& Streams. 2012. Lake health threats research study: An analysis of $E$. coli and blue-green algae toxins in Kosciusko County, Ind. Grace College and Theological Seminary. (Online). Available:
http://lakes.grace.edu/files/uploads/ourresearch/AlgaeFinalReport2012.pdf. (2014, June 7)

Center for Lakes \& Streams. 2014a. Center Lake. Grace College and Theological Seminary. (Online). Available: http://www.lakes.grace.edu/lakes/name/a-c/centerlake. (2014, June 7)

Center for Lakes \& Streams. 2014b. Pike Lake. Grace College and Theological Seminary. (Online). Available: http://www.lakes.grace.edu/lakes/name/p-r/pike-lake. (2014, June 7)

McLellan, S., \& Salmore, A. 2003. Evidence for localized bacterial loading as the cause of chronic beach closings in a freshwater marina. Water Research. 37(11): 2700-2708.

Source Molecular Corporation. 2012. Gull Fecal Pollution Toolbox ${ }^{\text {M }}$, Human Fecal Pollution Toolbox ${ }^{\top \mathrm{TM}}$, Dog Fecal Pollution Toolbox ${ }^{\top \mathrm{M}}$. Source Molecular Corporation. (Online) Available: http://www.sourcemolecular.com/index.html. (2014, June 7).

Watters, Debra E. 2004. Warsaw Preparation of Water Samples and E. coli Standard Operating Procedures: 1-6.

Weather Underground. 2014. (Online). Available: http://www.wunderground.com/ (2014, June 7)

Figures


Figure 1. Satellite image of Center Lake and Pike Lake and their respective sampling areas.


Figure 2. Center Lake sampling sites. Samples at sites C1, C2, C5, and C6 were collected at a depth of 0.3 meters and samples at C3 and C4 were collected at a depth of 0.6 meters.


Figure 3. Pike Lake sampling sites. Samples at sites P1, P2, P5, and P6 were collected at a depth of 0.3 meters and samples at P3 and P4 were collected at a depth of 0.6 meters.


Figure 4. Daily average E. coli concentrations for dry days and rainy days.


Figure 5. Correlation between $E$. coli concentrations and water temperature $\left(r^{2}=0.08\right)$.


Figure 6. Correlation between E. coli concentrations and water $\mathrm{pH}\left(\mathrm{r}^{2}=0.03\right)$.


Figure 7A. Average wind speed compared to average E. coli concentrations at Center Lake.


Figure 7B. Average wind speed compared to average E. coli concentrations at Pike Lake.


Figure 8. Correlation between swimming activity and E. coli concentrations for the right side of the Center Lake pier on dates with available data ( $r^{2}=0.35$ ).


Figure 9. Bird activity for Center Lake plotted on primary vertical axis with average $E$. coli concentrations on secondary vertical axis.


Figure 10. Bird activity for Pike Lake plotted on primary vertical axis with average E. coli concentrations on secondary vertical axis.

## Tables

Table 1. Total daily average E. coli concentrations (in MPN/100 ml) for rainy days compared to dry days. In order to illustrate the influence of the drain at Center Lake, data for site C2 is also reported.

| Location | Total Daily Average E. coli Concentrations (MPN/100 ml) |  |  |  |
| :--- | ---: | ---: | ---: | :---: |
|  | Rainy Days |  | Dry Days |  |
| All Sites | 300 |  | 192 |  |
| Center Lake, Site C2 | 434 |  | 215 |  |

Table 2. Total average E. coli concentrations (in MPN/100 ml), including the number of samples taken for each site and how often the concentrations were high according to the health threshold guideline of $235 \mathrm{MPN} / 100 \mathrm{ml}$.

| Site | Total Daily <br> Average <br> $(M P N / 100 ~ m l)$ | Days Exceeding <br> 235 MPN/100 <br> ml | Total <br> Days <br> Sampled | Frequency of High <br> Concentration <br> Days (\%) |
| :--- | ---: | :--- | :--- | :--- |
| C1 | 376 | 17 | 32 | 51 |
| C2 | 283 | 15 | 32 | 47 |
| C3 | 124 | 4 | 32 | 13 |
| C4 | 82 | 0 | 32 | 0 |
| C5 | 306 | 16 | 32 | 50 |
| C6 | 212 | 12 | 32 | 38 |
| Totals | 231 | 64 | 192 | 33 |
|  | 265 |  |  | 34 |
| P1 | 254 | 11 | 32 | 34 |
| P2 | 102 | 11 | 32 | 32 |
| P3 | 161 | 4 | 32 | 13 |
| P4 | 208 | 4 | 32 | 13 |
| P5 | 252 | 8 | 32 | 25 |
| P6 | 207 | 11 | 32 | 34 |
| Totals |  | 49 | 192 | 26 |

Table 3. Average E. coli concentrations (in MPN/100 ml) over certain sampling sites on all dry days. Columns 1-3 display total averages for each region at the respective lake. Columns 4-7 represent the average concentrations for the respective regions, differentiating from the right and left sides of the pier at each lake.

|  | Center | Pike | Both | Center <br> West <br> Side | Center <br> East <br> Side | Pike <br> South <br> Side | Pike <br> North <br> Side |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Near Shore (1, 2, 5, 6) | 267 | 197 | 232 | 341 | 193 | 217 | 177 |
| Off Shore (3, 4) | 98 | 93 | 95 | 123 | 72 | 98 | 89 |
| Away From Pier (5, 6) | 238 | 166 | 202 | 294 | 183 | 163 | 169 |
| Vertex of Pier (1, 2) | 295 | 228 | 262 | 388 | 203 | 272 | 185 |
| All Sites (1-6) | 210 | 163 | 187 | 268 | 153 | 177 | 148 |

Table 4. Total average E. coli concentrations (MPN/100 ml) compared to wind direction on dry days. * indicates there were no sampling dates with this wind direction.

| Wind <br> Direction | Center | Pike | Center <br> Both <br> Side | Center <br> East <br> Side | Pike <br> South <br> Side | Pike <br> North <br> Side |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| North | 161 | 35 | 98 | 145 | 178 | 40 | 30 |
| South | 164 | 276 | 220 | 173 | 155 | 303 | 250 |
| East | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ |
| West | 175 | 208 | 192 | 192 | 159 | 237 | 180 |
| Northeast | 66 | 227 | 147 | 102 | 30 | 249 | 206 |
| Northwest | 243 | 104 | 174 | 440 | 47 | 193 | 14 |
| Southeast | $*$ | 114 | $*$ | $*$ | $*$ | 63 | 165 |
| Southwest | 327 | 133 | 229.8 | 425 | 228 | 157 | 109 |

Table 5. Average swimming activity (estimated as swimmer hours) for each side of the pier at each lake during the study period.

|  | Center | Pike |
| :--- | :---: | :---: |
| Left side of pier | 566 | 244 |
| Right side of pier | 45 | 14 |
| Both sides of pier | 305 | 129 |

Table 6. Molecular source tracking results for gull gene biomarker. E. coli concentrations shown for reference. BD indicates levels below detection. Sites CD1 and CD2 represent the drain located on the east side of the pier at Center Lake near site C2.

| Date | Site | E. coli (MPN/100mL) | DNA Match | DNA Amount (\# copies/100mL) |
| :---: | :---: | ---: | :--- | ---: |
| 29-Jul | C1 | 770 | Absent | BD |
| 29-Jul | P1 | 866 | Absent | BD |
| 30-Jul | C1 | 461 | Present | 280 |
| 30-Jul | P1 | 461 | Absent | BD |
| 31-Jul | C1 | 1046 | Present | 543 |
| 6-Aug | P2 | 387 | Absent | BD |
| 8-Aug | P1 | 517 | Absent | BD |
| 13-Aug | C1 | 435 | Absent | BD |
| 13-Aug | P2 | 411 | Absent | BD |
| 21-Aug | C1 | 1733 | Present | 2200 |
| 21-Aug | P1 | 1300 | Absent | BD |
| 21-Aug | P2 | 866 | Absent | BD |
| 22-Aug | CD1 | 1120 | Present | 1430 |
| 22-Aug | CD2 | 1300 | Present | 13500 |
| 28-Aug | C1 | 727 | Present | 79600 |

## Appendix



|  | P4 | 29 |  |  | 82 | 14 | 7 | WSW | 0.37 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | P5 | 9 |  |  | 82 | 14 | 7 | WSW | 0.37 |  |  |  |  |  |
|  | P6 | 345 |  |  | 82 | 14 | 7 | WSW | 0.37 |  |  |  |  |  |
| 10-Jul | C1 | 1733 | 26.3 | 8.6 | 79 | 8 | 6 | NW | 0.22 | 0 | 20 | 2 |  |  |
|  | C2 | 162 | 26.5 | 8.3 | 79 | 8 | 6 | NW | 0.22 |  |  |  |  |  |
|  | C3 | 261 | 26.5 | 8.6 | 79 | 8 | 6 | NW | 0.22 |  |  |  |  |  |
|  | C4 | 70 | 26.6 | 8.5 | 79 | 8 | 6 | NW | 0.22 |  |  |  |  |  |
|  | C5 | 345 |  |  | 79 | 8 | 6 | NW | 0.22 |  |  |  |  |  |
|  | C6 | 142 |  |  | 79 | 8 | 6 | NW | 0.22 |  |  |  |  |  |
|  | CD | 1203 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | P1 | 59 | 25.3 | 8.6 | 79 | 8 | 6 | NW | 0.22 | 0 | 0 | 0 |  |  |
|  | P2 | 40 | 25.4 | 8.5 | 79 | 8 | 6 | NW | 0.22 |  |  |  |  |  |
|  | P3 | 12 | 25.5 | 8.5 | 79 | 8 | 6 | NW | 0.22 |  |  |  |  |  |
|  | P4 | 28 | 25.4 | 8.5 | 79 | 8 | 6 | NW | 0.22 |  |  |  |  |  |
|  | P5 | 22 |  |  | 79 | 8 | 6 | NW | 0.22 |  |  |  |  |  |
|  | P6 | 18 |  |  | 79 | 8 | 6 | NW | 0.22 |  |  |  |  |  |
| 11-Jul | C1 | 115 | 24.1 | 8.5 | 77 | 10 | 6 | NNE | 0 | 0 | 12 | 0 | 286 | 23 |
|  | C2 | 44 | 24.5 | 8.5 | 77 | 10 | 6 | NNE | 0 |  |  |  |  |  |
|  | C3 | 119 | 25 | 8.5 | 77 | 10 | 6 | NNE | 0 |  |  |  |  |  |
|  | C4 | 50 | 25.4 | 8.5 | 77 | 10 | 6 | NNE | 0 |  |  |  |  |  |
|  | C5 | 63 |  |  | 77 | 10 | 6 | NNE | 0 |  |  |  |  |  |
|  | C6 | 40 |  |  | 77 | 10 | 6 | NNE | 0 |  |  |  |  |  |
|  | P1 | 93 | 23.6 | 8.5 | 77 | 10 | 6 | NNE | 0 | 0 | 0 | 0 | 138 | 16 |
|  | P2 | 727 | 23.7 | 8.5 | 77 | 10 | 6 | NNE | 0 |  |  |  |  |  |
|  | P3 | 244 | 23.2 | 8.5 | 77 | 10 | 6 | NNE | 0 |  |  |  |  |  |
|  | P4 | 150 | 23.9 | 8.5 | 77 | 10 | 6 | NNE | 0 |  |  |  |  |  |
|  | P5 | 120 |  |  | 77 | 10 | 6 | NNE | 0 |  |  |  |  |  |
|  | P6 | 91 |  |  | 77 | 10 | 6 | NNE | 0 |  |  |  |  |  |


| 14-Jul | W |  |  |  | 76 | 9 | 5 | E | 0 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15-Jul | C1 | 75 | 26.97 | 8.6 | 78 | 6 | 3 | SSW | 0 | 0 | 0 | 0 | 1108 | 100 |
|  | C2 | 260 | 26.82 | 8.6 | 78 | 6 | 3 | SSW | 0 |  |  |  |  |  |
|  | C3 | 51 | 27.72 | 8.6 | 78 | 6 | 3 | SSW | 0 |  |  |  |  |  |
|  | C4 | 34 | 27.16 | 8.6 | 78 | 6 | 3 | SSW | 0 |  |  |  |  |  |
|  | C5 | 155 | 27.07 | 8.6 | 78 | 6 | 3 | SSW | 0 |  |  |  |  |  |
|  | C6 | 479 | 27.03 | 8.5 | 78 | 6 | 3 | SSW | 0 |  |  |  |  |  |
|  | P1 | 689 | 26.64 | 8.4 | 78 | 6 | 3 | SSW | 0 | 55 | 20 | 0 | 474 | 26 |
|  | P2 | 308 | 26.6 | 8.4 | 78 | 6 | 3 | SSW | 0 |  |  |  |  |  |
|  | P3 | 210 | 26.98 | 8.4 | 78 | 6 | 3 | SSW | 0 |  |  |  |  |  |
|  | P4 | 435 | 26.47 | 8.3 | 78 | 6 | 3 | SSW | 0 |  |  |  |  |  |
|  | P5 | 185 | 26.63 | 8.4 | 78 | 6 | 3 | SSW | 0 |  |  |  |  |  |
|  | P6 | 387 | 26.57 | 8.4 | 78 | 6 | 3 | SSW | 0 |  |  |  |  |  |
| 16-Jul | C1 | 46 | 28 | 8.6 | 79 | 9 | 2 | W | 0 | 0 | 0 | 0 | 423 | 21 |
|  | C2 | 288 | 27.83 | 8.4 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
|  | C3 | 64 | 28.33 | 8.5 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
|  | C4 | 135 | 28.38 | 8.4 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
|  | C5 | 88 | 27.98 | 8.6 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
|  | C6 | 345 | 28.08 | 8.4 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
|  | P1 | 687 | 27.38 | 8.4 | 79 | 9 | 2 | W | 0 | 0 | 0 | 0 | 355 | 0 |
|  | P2 | 687 | 27.38 | 8.4 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
|  | P3 | 261 | 27.54 | 8.4 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
|  | P4 | 308 | 27.51 | 8.4 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
|  | P5 | 613 | 27.3 | 8.4 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
|  | P6 | 411 | 27.33 | 8.4 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
| 17-Jul | C1 | 133 | 29.18 | 8.5 | 79 | 9 | 2 | W | 0 | 0 | 10 | 8 | 764 | 59 |
|  | C2 | 205 | 29.09 | 8.3 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
|  | C3 | 96 | 29.51 | 8.5 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |


|  | C4 | 127 | 29.61 | 8.3 | 79 | 9 | 2 | w | 0 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C5 | 579 | 29.08 | 8.5 | 79 | 9 | 2 | w | 0 |  |  |  |  |  |
|  | C6 | 326 | 29.08 | 8.4 | 79 | 9 | 2 | w | 0 |  |  |  |  |  |
|  | P1 | 84 | 28.45 | 8.4 | 79 | 9 | 2 | W | 0 | 35 | 15 | 0 | 214 | 8 |
|  | P2 | 210 | 28.18 | 8.3 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
|  | P3 | 67 | 28.58 | 8.4 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
|  | P4 | 172 | 28.65 | 8.3 | 79 | 9 | 2 | W | 0 |  |  |  |  |  |
|  | P5 | 124 | 28.19 | 8.4 | 79 | 9 | 2 | w | 0 |  |  |  |  |  |
|  | P6 | 166 | 28.3 | 8.3 | 79 | 9 | 2 | w | 0 |  |  |  |  |  |
| 18-Jul | C1 | 866 | 30.52 | 8.5 | 81 | 10 | 3 | Wsw | 0 | 0 | 0 | 0 | 930 | 84 |
|  | C2 | 387 | 30.38 | 8.5 | 81 | 10 | 3 | Wsw | 0 |  |  |  |  |  |
|  | C3 | 185 | 29.53 | 8.5 | 81 | 10 | 3 | WSW | 0 |  |  |  |  |  |
|  | C4 | 91 | 29.58 | 8.5 | 81 | 10 | 3 | Wsw | 0 |  |  |  |  |  |
|  | C5 | 517 | 30.36 | 8.5 | 81 | 10 | 3 | Wsw | 0 |  |  |  |  |  |
|  | C6 | 225 | 30.06 | 8.5 | 81 | 10 | 3 | Wsw | 0 |  |  |  |  |  |
|  | P1 | 727 | 30.5 | 8.5 | 81 | 10 | 3 | Wsw | 0 | 0 | 0 | 0 | 279 | 9 |
|  | P2 | 141 | 30.56 | 8.5 | 81 | 10 | 3 | Wsw | 0 |  |  |  |  |  |
|  | P3 | 56 | 30.34 | 8.3 | 81 | 10 | 3 | Wsw | 0 |  |  |  |  |  |
|  | P4 | 31 | 30.46 | 8.2 | 81 | 10 | 3 | Wsw | 0 |  |  |  |  |  |
|  | P5 | 150 | 30.52 | 8.5 | 81 | 10 | 3 | Wsw | 0 |  |  |  |  |  |
|  | P6 | 121 | 30.68 | 8.5 | 81 | 10 | 3 | WSW | 0 |  |  |  |  |  |
| 21-Jul | W |  |  |  | 74 | 6 | 1 | ESE | 0 |  |  |  |  |  |
| 22-Jul | C1 | 387 | 28.34 | 8.5 | 68 | 10 | 4 | E | 1.13 | 0 | 25 | 15 |  |  |
|  | C2 | 345 | 27.19 | 8.4 | 68 | 10 | 4 | E | 1.13 |  |  |  |  |  |
|  | C3 | 210 | 28.74 | 8.5 | 68 | 10 | 4 | E | 1.13 |  |  |  |  |  |
|  | C4 | 80 | 28.6 | 8.5 | 68 | 10 | 4 | E | 1.13 |  |  |  |  |  |
|  | C5 | 291 | 27.73 | 8.5 | 68 | 10 | 4 | E | 1.13 |  |  |  |  |  |
|  | C6 | 260 | 27.31 | 8.4 | 68 | 10 | 4 | E | 1.13 |  |  |  |  |  |


|  | CD | 159 | 27.19 | 8.4 | 68 | 10 | 4 | E | 1.13 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | P1 | 179 | 27.14 | 8.4 | 68 | 10 | 4 | E | 1.13 | 35 | 0 | 0 |  |  |
|  | P2 | 1733 | 26.33 | 8.3 | 68 | 10 | 4 | E | 1.13 |  |  |  |  |  |
|  | P3 | 185 | 27.34 | 8.5 | 68 | 10 | 4 | E | 1.13 |  |  |  |  |  |
|  | P4 | 2420 | 27.01 | 8.4 | 68 | 10 | 4 | E | 1.13 |  |  |  |  |  |
|  | P5 | 727 | 27.15 | 8.5 | 68 | 10 | 4 | E | 1.13 |  |  |  |  |  |
|  | P6 | 2420 | 26.53 | 8.3 | 68 | 10 | 4 | E | 1.13 |  |  |  |  |  |
| 23-Jul | C1 | 51 | 27.81 | 8.5 | 70 | 17 | 5 | WNW | 0.02 | 0 | 25 | 35 |  |  |
|  | C2 | 126 | 27.75 | 8.3 | 70 | 17 | 5 | WNW | 0.02 |  |  |  |  |  |
|  | C3 | 61 | 28.23 | 8.5 | 70 | 17 | 5 | WNW | 0.02 |  |  |  |  |  |
|  | C4 | 192 | 28.35 | 8.4 | 70 | 17 | 5 | WNW | 0.02 |  |  |  |  |  |
|  | C5 | 42 | 27.83 | 8.5 | 70 | 17 | 5 | WNW | 0.02 |  |  |  |  |  |
|  | C6 | 148 | 27.89 | 8.5 | 70 | 17 | 5 | WNW | 0.02 |  |  |  |  |  |
|  | P1 | 488 | 26.55 | 8.5 | 70 | 17 | 5 | WNW | 0.02 | 35 | 0 | 0 |  |  |
|  | P2 | 387 | 26.83 | 8.5 | 70 | 17 | 5 | WNW | 0.02 |  |  |  |  |  |
|  | P3 | 361 | 26.97 | 8.5 | 70 | 17 | 5 | WNW | 0.02 |  |  |  |  |  |
|  | P4 | 76 | 26.99 | 8.5 | 70 | 17 | 5 | WNW | 0.02 |  |  |  |  |  |
|  | P5 | 1046 | 26.71 | 8.5 | 70 | 17 | 5 | WNW | 0.02 |  |  |  |  |  |
|  | P6 | 179 | 26.71 | 8.5 | 70 | 17 | 5 | WNW | 0.02 |  |  |  |  |  |
| 24-Jul | C1 | 47 | 25.66 | 8.5 | 60 | 12 | 5 | NNE | 0 | 0 | 0 | 0 | 264 | 18 |
|  | C2 | 16 | 25.21 | 8.5 | 60 | 12 | 5 | NNE | 0 |  |  |  |  |  |
|  | C3 | 19 | 26.37 | 8.5 | 60 | 12 | 5 | NNE | 0 |  |  |  |  |  |
|  | C4 | 9 | 26.51 | 8.5 | 60 | 12 | 5 | NNE | 0 |  |  |  |  |  |
|  | C5 | 248 | 25.56 | 8.5 | 60 | 12 | 5 | NNE | 0 |  |  |  |  |  |
|  | C6 | 20 | 24.92 | 8.5 | 60 | 12 | 5 | NNE | 0 |  |  |  |  |  |
|  | P1 | 161 | 24.52 | 8.4 | 60 | 12 | 5 | NNE | 0 | 35 | 0 | 0 | 161 | 27 |
|  | P2 | 148 | 24.29 | 8.3 | 60 | 12 | 5 | NNE | 0 |  |  |  |  |  |
|  | P3 | 488 | 25.29 | 8.3 | 60 | 12 | 5 | NNE | 0 |  |  |  |  |  |


|  | P4 | 33 | 25.19 | 8.3 | 60 | 12 | 5 | NNE | 0 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | P5 | 387 | 24.7 | 8.4 | 60 | 12 | 5 | NNE | 0 |  |  |  |  |  |
|  | P6 | 84 | 24.86 | 8.3 | 60 | 12 | 5 | NNE | 0 |  |  |  |  |  |
| 25-Jul | C1 | 53 | 25.55 | 8.5 | 61 | 8 | 1 | W | 0 | 0 | 15 | 35 | 185 | 9 |
|  | C2 | 25 | 25.13 | 8.6 | 61 | 8 | 1 | W | 0 |  |  |  |  |  |
|  | C3 | 24 | 25.97 | 8.5 | 61 | 8 | 1 | W | 0 |  |  |  |  |  |
|  | C4 | 59 | 26.03 | 8.5 | 61 | 8 | 1 | W | 0 |  |  |  |  |  |
|  | C5 | 20 | 25.25 | 8.5 | 61 | 8 | 1 | W | 0 |  |  |  |  |  |
|  | C6 | 36 | 25.24 | 8.5 | 61 | 8 | 1 | W | 0 |  |  |  |  |  |
|  | P1 | 38 | 24.61 | 8.6 | 61 | 8 | 1 | W | 0 | 35 | 0 | 0 | 86 | 9 |
|  | P2 | 26 | 24.73 | 8.6 | 61 | 8 | 1 | W | 0 |  |  |  |  |  |
|  | P3 | 10 | 25.08 | 8.6 | 61 | 8 | 1 | W | 0 |  |  |  |  |  |
|  | P4 | 17 | 25.05 | 8.6 | 61 | 8 | 1 | W | 0 |  |  |  |  |  |
|  | P5 | 17 | 24.79 | 8.6 | 61 | 8 | 1 | W | 0 |  |  |  |  |  |
|  | P6 | 22 | 24.83 | 8.6 | 61 | 8 | 1 | W | 0 |  |  |  |  |  |
| 28-Jul | W |  |  |  | 58 | 16 | 7 | W | 0 |  |  |  |  |  |
| 29-Jul | C1 | 770 | 22.54 | 8.5 | 62 | 14 | 4 | W | 0 | 20 | 8 | 15 |  |  |
|  | C2 | 236 | 23.45 | 8.5 | 62 | 14 | 4 | W | 0 |  |  |  |  |  |
|  | C3 | 276 | 23.14 | 8.5 | 62 | 14 | 4 | W | 0 |  |  |  |  |  |
|  | C4 | 37 | 23.42 | 8.5 | 62 | 14 | 4 | W | 0 |  |  |  |  |  |
|  | C5 | 150 | 22.95 | 8.5 | 62 | 14 | 4 | W | 0 |  |  |  |  |  |
|  | C6 | 88 | 23.18 | 8.5 | 62 | 14 | 4 | W | 0 |  |  |  |  |  |
|  | P1 | 866 | 20.96 | 8.5 | 62 | 14 | 4 | W | 0 | 20 | 15 | 2 |  |  |
|  | P2 | 50 | 22 | 8.5 | 62 | 14 | 4 | W | 0 |  |  |  |  |  |
|  | P3 | 61 | 22.04 | 8.5 | 62 | 14 | 4 | W | 0 |  |  |  |  |  |
|  | P4 | 17 | 22.25 | 8.5 | 62 | 14 | 4 | W | 0 |  |  |  |  |  |
|  | P5 | 18 | 21.48 | 8.5 | 62 | 14 | 4 | W | 0 |  |  |  |  |  |
|  | P6 | 68 | 21.96 | 8.5 | 62 | 14 | 4 | W | 0 |  |  |  |  |  |


| 30-Jul | C1 | 461 | 24.9 | 8.6 | 73 | 8 | 4 | SSW | 0 | 0 | 20 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C2 | 411 | 24.7 | 8.5 | 73 | 8 | 4 | SSW | 0 |  |  |  |
|  | C3 | 142 | 24.3 | 8.6 | 73 | 8 | 4 | SSW | 0 |  |  |  |
|  | C4 | 75 | 24 | 8.6 | 73 | 8 | 4 | SSW | 0 |  |  |  |
|  | C5 | 435 | 25.2 | 8.6 | 73 | 8 | 4 | SSW | 0 |  |  |  |
|  | C6 | 248 | 25.1 | 8.4 | 73 | 8 | 4 | SSW | 0 |  |  |  |
|  | P1 | 461 | 26.9 | 8.7 | 73 | 8 | 4 | SSW | 0 | 0 | 8 | 2 |
|  | P2 | 121 | 24.2 | 8.7 | 73 | 8 | 4 | SSW | 0 |  |  |  |
|  | P3 | 10 | 24.7 | 8.7 | 73 | 8 | 4 | SSW | 0 |  |  |  |
|  | P4 | 40 | 23.3 | 8.7 | 73 | 8 | 4 | SSW | 0 |  |  |  |
|  | P5 | 15 | 25.7 | 8.7 | 73 | 8 | 4 | SSW | 0 |  |  |  |
|  | P6 | 133 | 24.6 | 8.7 | 73 | 8 | 4 | SSW | 0 |  |  |  |
| 31-Jul | C1 | 1046 | 23.1 | 8.5 | 64 | 5 | 3 | SSE | 0.17 | 0 | 10 | 55 |
|  | C2 | 1046 | 23.4 | 8.5 | 64 | 5 | 3 | SSE | 0.17 |  |  |  |
|  | C3 | 194 | 23.8 | 8.5 | 64 | 5 | 3 | SSE | 0.17 |  |  |  |
|  | C4 | 62 | 24 | 8.5 | 64 | 5 | 3 | SSE | 0.17 |  |  |  |
|  | C5 | 549 | 23.6 | 8.5 | 64 | 5 | 3 | SSE | 0.17 |  |  |  |
|  | C6 | 435 | 23.3 | 8.5 | 64 | 5 | 3 | SSE | 0.17 |  |  |  |
|  | P1 | 63 | 22.8 | 8.7 | 64 | 5 | 3 | SSE | 0.17 | 0 | 16 | 3 |
|  | P2 | 167 | 22.8 | 8.7 | 64 | 5 | 3 | SSE | 0.17 |  |  |  |
|  | P3 | 6 | 22.9 | 8.7 | 64 | 5 | 3 | SSE | 0.17 |  |  |  |
|  | P4 | 32 | 23 | 8.7 | 64 | 5 | 3 | SSE | 0.17 |  |  |  |
|  | P5 | 32 | 22.8 | 8.8 | 64 | 5 | 3 | SSE | 0.17 |  |  |  |
|  | P6 | 113 | 22.9 | 8.7 | 64 | 5 | 3 | SSE | 0.17 |  |  |  |
| 1-Aug | C1 | 345 | 22.56 | 8.5 | 64.8 | 5 | 4 | WSW | 0 | 0 | 0 | 50 |
|  | C2 | 148 | 23.04 | 8.4 | 64.8 | 5 | 4 | WSW | 0 |  |  |  |
|  | C3 | 86 | 22.93 | 8.4 | 64.8 | 5 | 4 | WSW | 0 |  |  |  |
|  | C4 | 55 | 23.13 | 8.4 | 64.8 | 5 | 4 | WSW | 0 |  |  |  |


|  | C5 | 105 | 22.14 | 8.4 | 64.8 | 5 | 4 | WSW | 0 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C6 | 411 | 22.88 | 8.4 | 64.8 | 5 | 4 | WSW | 0 |  |  |  |
|  | P1 | 44 | 21.72 | 8.5 | 64.4 | 1.9 | 1.3 | SSW | 0 | 12 | 14 | 5 |
|  | P2 | 32 | 21.81 | 8.5 | 64.4 | 1.9 | 1.3 | SSW | 0 |  |  |  |
|  | P3 | 11 | 22.04 | 8.5 | 64.4 | 1.9 | 1.3 | SSW | 0 |  |  |  |
|  | P4 | 6 | 22.15 | 8.5 | 64.4 | 1.9 | 1.3 | SSW | 0 |  |  |  |
|  | P5 | 35 | 21.88 | 8.6 | 64.4 | 1.9 | 1.3 | SSW | 0 |  |  |  |
|  | P6 | 9 | 21.92 | 8.5 | 64.4 | 1.9 | 1.3 | SSW | 0 |  |  |  |
| 4-Aug | W |  |  |  | 62 | 12 | 3 | NNW | 0 |  |  |  |
| 5-Aug | C1 | 179 | 22.81 | 8.5 | 62.96 | 0 | 0 | N/A | 0 | 0 | 0 | 50 |
|  | C2 | 162 | 22.97 | 8.5 | 62.96 | 0 | 0 | N/A | 0 |  |  |  |
|  | C3 | 117 | 23.49 | 8.5 | 62.96 | 0 | 0 | N/A | 0 |  |  |  |
|  | C4 | 119 | 23.53 | 8.5 | 62.96 | 0 | 0 | N/A | 0 |  |  |  |
|  | C5 | 155 | 23.07 | 8.5 | 62.96 | 0 | 0 | N/A | 0 |  |  |  |
|  | C6 | 110 | 23.13 | 8.5 | 62.96 | 0 | 0 | N/A | 0 |  |  |  |
|  | P1 | 96 | 22.69 | 8.6 | 62.42 | 0 | 0 | N/A | 0 | 0 | 22 | 4 |
|  | P2 | 160 | 22.65 | 8.6 | 62.42 | 0 | 0 | N/A | 0 |  |  |  |
|  | P3 | 61 | 23.01 | 8.6 | 62.42 | 0 | 0 | N/A | 0 |  |  |  |
|  | P4 | 148 | 22.82 | 8.6 | 62.42 | 0 | 0 | N/A | 0 |  |  |  |
|  | P5 | 96 | 22.72 | 8.6 | 62.42 | 0 | 0 | N/A | 0 |  |  |  |
|  | P6 | 248 | 22.56 | 8.6 | 62.42 | 0 | 0 | N/A | 0 |  |  |  |
| 6-Aug | C1 | 124 | 22.95 | 8.4 | 66.02 | 1.2 | 0.9 | S | 0.04 | 0 | 30 | 40 |
|  | C2 | 291 | 22.78 | 8.3 | 66.02 | 1.2 | 0.9 | S | 0.04 |  |  |  |
|  | C3 | 109 | 23.21 | 8.3 | 66.02 | 1.2 | 0.9 | S | 0.04 |  |  |  |
|  | C4 | 72 | 23.22 | 8.3 | 66.02 | 1.2 | 0.9 | S | 0.04 |  |  |  |
|  | C5 | 261 | 22.94 | 8.4 | 66.02 | 1.2 | 0.9 | S | 0.04 |  |  |  |
|  | C6 | 152 | 22.76 | 8.3 | 66.02 | 1.2 | 0.9 | S | 0.04 |  |  |  |
|  | P1 | 291 | 21.16 | 8.1 | 64.58 | 1.1 | 0.2 | SSE | 0.04 | 75 | 34 | 5 |


|  | P2 | 387 | 21.77 | 8.1 | 64.58 | 1.1 | 0.2 | SSE | 0.04 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | P3 | 93 | 21.68 | 8.1 | 64.58 | 1.1 | 0.2 | SSE | 0.04 |  |  |  |
|  | P4 | 99 | 21.88 | 8.0 | 64.58 | 1.1 | 0.2 | SSE | 0.04 |  |  |  |
|  | P5 | 167 | 21.19 | 8.1 | 64.58 | 1.1 | 0.2 | SSE | 0.04 |  |  |  |
|  | P6 | 488 | 21.49 | 8.1 | 64.58 | 1.1 | 0.2 | SSE | 0.04 |  |  |  |
| 7-Aug | C1 | 236 | 23.3 | 8.4 | 69.8 | 0.4 | 0 | S | 0 | 0 | 0 | 40 |
|  | C2 | 326 | 23.37 | 8.3 | 69.8 | 0.4 | 0 | S | 0 |  |  |  |
|  | C3 | 50 | 23.54 | 8.4 | 69.8 | 0.4 | 0 | S | 0 |  |  |  |
|  | C4 | 74 | 23.61 | 8.3 | 69.8 | 0.4 | 0 | S | 0 |  |  |  |
|  | C5 | 130 | 23.24 | 8.4 | 69.8 | 0.4 | 0 | S | 0 |  |  |  |
|  | C6 | 205 | 23.28 | 8.3 | 69.8 | 0.4 | 0 | S | 0 |  |  |  |
|  | P1 | 42 | 22.32 | 8.4 | 69.44 | 0.3 | 0 | SE | 0 | 0 | 34 | 0 |
|  | P2 | 81 | 22.37 | 8.2 | 69.44 | 0.3 | 0 | SE | 0 |  |  |  |
|  | P3 | 62 | 22.45 | 8.4 | 69.44 | 0.3 | 0 | SE | 0 |  |  |  |
|  | P4 | 70 | 22.48 | 8.2 | 69.44 | 0.3 | 0 | SE | 0 |  |  |  |
|  | P5 | 84 | 22.12 | 8.4 | 69.44 | 0.3 | 0 | SE | 0 |  |  |  |
|  | P6 | 345 | 22.19 | 8.2 | 69.44 | 0.3 | 0 | SE | 0 |  |  |  |
| 8-Aug | C1 | 236 | 24.21 | 8.4 | 67.1 | 3.8 | 2.7 | NE | 0.4 | 0 | 30 | 55 |
|  | C2 | 1120 | 23.89 | 8.3 | 67.1 | 3.8 | 2.7 | NE | 0.4 |  |  |  |
|  | C3 | 172 | 24.39 | 8.4 | 67.1 | 3.8 | 2.7 | NE | 0.4 |  |  |  |
|  | C4 | 152 | 24.36 | 8.4 | 67.1 | 3.8 | 2.7 | NE | 0.4 |  |  |  |
|  | C5 | 326 | 23.76 | 8.4 | 67.1 | 3.8 | 2.7 | NE | 0.4 |  |  |  |
|  | C6 | 272 | 23.21 | 8.3 | 67.1 | 3.8 | 2.7 | NE | 0.4 |  |  |  |
|  | P1 | 517 | 23.44 | 8.5 | 68.9 | 6 | 5.1 | N | 0.4 | 0 | 16 | 3 |
|  | P2 | 249 | 23.23 | 8.4 | 68.9 | 6 | 5.1 | N | 0.4 |  |  |  |
|  | P3 | 96 | 23.71 | 8.5 | 68.9 | 6 | 5.1 | N | 0.4 |  |  |  |
|  | P4 | 70 | 23.67 | 8.4 | 68.9 | 6 | 5.1 | N | 0.4 |  |  |  |
|  | P5 | 326 | 23.29 | 8.5 | 68.9 | 6 | 5.1 | N | 0.4 |  |  |  |


|  | P6 | 111 | 23.26 | 8.4 | 68.9 | 6 | 5.1 | N | 0.4 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11-Aug | W |  |  |  | 68 | 10 | 1 | NW | 0 |  |  |  |
| 12-Aug | C1 | 147 | 25.18 | 8.4 | 65.66 | 0.7 | 0.2 | S | 0 | 0 | 9 | 25 |
|  | C2 | 173 | 25.07 | 8.2 | 65.66 | 0.7 | 0.2 | S | 0 |  |  |  |
|  | C3 | 113 | 25.62 | 8.4 | 65.66 | 0.7 | 0.2 | S | 0 |  |  |  |
|  | C4 | 21 | 25.73 | 8.3 | 65.66 | 0.7 | 0.2 | S | 0 |  |  |  |
|  | C5 | 365 | 24.98 | 8.4 | 65.66 | 0.7 | 0.2 | S | 0 |  |  |  |
|  | C6 | 133 | 25.13 | 8.3 | 65.66 | 0.7 | 0.2 | S | 0 |  |  |  |
|  | P1 | 154 | 24.24 | 8.5 | 66.56 | 0.9 | 0.4 | S | 0 | 0 | 21 | 11 |
|  | P2 | 228 | 24.65 | 8.4 | 66.56 | 0.9 | 0.4 | S | 0 |  |  |  |
|  | P3 | 84 | 24.69 | 8.5 | 66.56 | 0.9 | 0.4 | S | 0 |  |  |  |
|  | P4 | 120 | 24.89 | 8.4 | 66.56 | 0.9 | 0.4 | S | 0 |  |  |  |
|  | P5 | 121 | 24.43 | 8.5 | 66.56 | 0.9 | 0.4 | S | 0 |  |  |  |
|  | P6 | 276 | 24.4 | 8.5 | 66.56 | 0.9 | 0.4 | S | 0 |  |  |  |
| 13-Aug | C1 | 435 | 24.65 | 8.4 | 61.52 | 5.5 | 4.5 | N | 0.01 | 0 | 15 | 25 |
|  | C2 | 488 | 24.19 | 8.3 | 61.52 | 5.5 | 4.5 | N | 0.01 |  |  |  |
|  | C3 | 124 | 25.27 | 8.4 | 61.52 | 5.5 | 4.5 | N | 0.01 |  |  |  |
|  | C4 | 58 | 25.38 | 8.4 | 61.52 | 5.5 | 4.5 | N | 0.01 |  |  |  |
|  | C5 | 816 | 24.18 | 8.4 | 61.52 | 5.5 | 4.5 | N | 0.01 |  |  |  |
|  | C6 | 727 | 23.48 | 8.3 | 61.52 | 5.5 | 4.5 | N | 0.01 |  |  |  |
|  | P1 | 102 | 24.01 | 8.4 | 63.14 | 5.9 | 5.4 | N | 0.01 | 0 | 6 | 2 |
|  | P2 | 411 | 23.59 | 8.5 | 63.14 | 5.9 | 5.4 | N | 0.01 |  |  |  |
|  | P3 | 66 | 24.46 | 8.4 | 63.14 | 5.9 | 5.4 | N | 0.01 |  |  |  |
|  | P4 | 150 | 24.48 | 8.5 | 63.14 | 5.9 | 5.4 | N | 0.01 |  |  |  |
|  | P5 | 135 | 23.48 | 8.4 | 63.14 | 5.9 | 5.4 | N | 0.01 |  |  |  |
|  | P6 | 214 | 23.58 | 8.5 | 63.14 | 5.9 | 5.4 | N | 0.01 |  |  |  |
| 14-Aug | C1 | 96 | 22.6 | 8.4 | 52.16 | 4.8 | 4 | N | 0 | 0 | 12 | 40 |
|  | C2 | 26 | 22.96 | 8.4 | 52.16 | 4.8 | 4 | N | 0 |  |  |  |


|  | C3 | 40 | 23.8 | 8.4 | 52.16 | 4.8 | 4 | N | 0 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C4 | 15 | 24.03 | 8.4 | 52.16 | 4.8 | 4 | N | 0 |  |  |  |
|  | C5 | 118 | 22.66 | 8.4 | 52.16 | 4.8 | 4 | N | 0 |  |  |  |
|  | C6 | 47 | 23.05 | 8.4 | 52.16 | 4.8 | 4 | N | 0 |  |  |  |
|  | P1 | 26 | 22.04 | 8.3 | 52.34 | 3.3 | 2.6 | N | 0 | 0 | 10 | 17 |
|  | P2 | 36 | 21.79 | 8.3 | 52.34 | 3.3 | 2.6 | N | 0 |  |  |  |
|  | P3 | 26 | 22.78 | 8.2 | 52.34 | 3.3 | 2.6 | N | 0 |  |  |  |
|  | P4 | 13 | 22.71 | 8.3 | 52.34 | 3.3 | 2.6 | N | 0 |  |  |  |
|  | P5 | 68 | 22.05 | 8.3 | 52.34 | 3.3 | 2.6 | N | 0 |  |  |  |
|  | P6 | 39 | 22.09 | 8.3 | 52.34 | 3.3 | 2.6 | N | 0 |  |  |  |
| 15-Aug | C1 | 326 | 22.64 | 8.4 | 53.06 | 0 | 0 | N/A | 0 | 45 | 15 | 56 |
|  | C2 | 248 | 22.42 | 8.3 | 53.06 | 0 | 0 | N/A | 0 |  |  |  |
|  | C3 | 236 | 23.31 | 8.3 | 53.06 | 0 | 0 | N/A | 0 |  |  |  |
|  | C4 | 135 | 23.68 | 8.3 | 53.06 | 0 | 0 | N/A | 0 |  |  |  |
|  | C5 | 116 | 22.91 | 8.3 | 53.06 | 0 | 0 | N/A | 0 |  |  |  |
|  | C6 | 77 | 22.84 | 8.3 | 53.06 | 0 | 0 | N/A | 0 |  |  |  |
|  | P1 | 17 | 21.81 | 8.4 | 53.42 | 0 | 0 | N/A | 0 | 0 | 10 | 5 |
|  | P2 | 15 | 22.19 | 8.4 | 53.42 | 0 | 0 | N/A | 0 |  |  |  |
|  | P3 | 6 | 22.67 | 8.4 | 53.42 | 0 | 0 | N/A | 0 |  |  |  |
|  | P4 | 16 | 22.67 | 8.4 | 53.42 | 0 | 0 | N/A | 0 |  |  |  |
|  | P5 | 28 | 21.85 | 8.4 | 53.42 | 0 | 0 | N/A | 0 |  |  |  |
|  | P6 | 28 | 22.05 | 8.4 | 53.42 | 0 | 0 | N/A | 0 |  |  |  |
| 18-Aug | W |  |  |  | 66 | 6 | 1 | ENE | 0 |  |  |  |
| 19-Aug | C1 | 435 | 23.93 | 8.4 | 70.88 | 4.5 | 0.9 | SW | 0 | 0 | 0 | 15 |
|  | C2 | 148 | 23.94 | 8.2 | 70.88 | 4.5 | 0.9 | SW | 0 |  |  |  |
|  | C3 | 219 | 23.98 | 8.4 | 70.88 | 4.5 | 0.9 | SW | 0 |  |  |  |
|  | C4 | 71 | 23.99 | 8.3 | 70.88 | 4.5 | 0.9 | SW | 0 |  |  |  |
|  | C5 | 770 | 23.54 | 8.4 | 70.88 | 4.5 | 0.9 | SW | 0 |  |  |  |


|  | C6 | 113 | 24.18 | 8.3 | 70.88 | 4.5 | 0.9 | SW | 0 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | P1 | 225 | 24.14 | 8.6 | 69.44 | 1.2 | 1 | S | 0 | 0 | 0 | 0 |
|  | P2 | 53 | 23.3 | 8.6 | 69.44 | 1.2 | 1 | S | 0 |  |  |  |
|  | P3 | 109 | 24.46 | 8.6 | 69.44 | 1.2 | 1 | S | 0 |  |  |  |
|  | P4 | 64 | 24.45 | 8.6 | 69.44 | 1.2 | 1 | S | 0 |  |  |  |
|  | P5 | 63 | 25.1 | 8.6 | 69.44 | 1.2 | 1 | S | 0 |  |  |  |
|  | P6 | 172 | 25.28 | 8.6 | 69.44 | 1.2 | 1 | S | 0 |  |  |  |
| 20-Aug | C1 | 261 | 24.53 | 8.4 | 59 | 0 | 0 | N/A | 0 | 5 | 16 | 60 |
|  | C2 | 58 | 24.61 | 8.1 | 59 | 0 | 0 | N/A | 0 |  |  |  |
|  | C3 | 206 | 24.52 | 8.4 | 59 | 0 | 0 | N/A | 0 |  |  |  |
|  | C4 | 88 | 24.99 | 8.3 | 59 | 0 | 0 | N/A | 0 |  |  |  |
|  | C5 | 308 | 23.96 | 8.4 | 59 | 0 | 0 | N/A | 0 |  |  |  |
|  | C6 | 236 | 23.99 | 8.3 | 59 | 0 | 0 | N/A | 0 |  |  |  |
|  | P1 | 276 | 24.11 | 8.5 | 59 | 0 | 0 | N/A | 0 | 15 | 4 | 4 |
|  | P2 | 248 | 24.07 | 8.4 | 59 | 0 | 0 | N/A | 0 |  |  |  |
|  | P3 | 161 | 24.45 | 8.4 | 59 | 0 | 0 | N/A | 0 |  |  |  |
|  | P4 | 88 | 24.32 | 8.4 | 59 | 0 | 0 | N/A | 0 |  |  |  |
|  | P5 | 435 | 23.9 | 8.5 | 59 | 0 | 0 | N/A | 0 |  |  |  |
|  | P6 | 133 | 24.08 | 8.4 | 59 | 0 | 0 | N/A | 0 |  |  |  |
| 21-Aug | C1 | 1733 | 29.33 | 8.5 | 60 | 6 | 4 | WSW | 0 | 5 | 10 | 30 |
|  | C2 | 980 | 29.61 | 8.4 | 60 | 6 | 4 | WSW | 0 |  |  |  |
|  | C3 | 186 | 29.17 | 8.5 | 60 | 6 | 4 | WSW | 0 |  |  |  |
|  | C4 | 118 | 29.06 | 8.6 | 60 | 6 | 4 | WSW | 0 |  |  |  |
|  | C5 | 1203 | 29.94 | 8.6 | 60 | 6 | 4 | WSW | 0 |  |  |  |
|  | C6 | 411 | 29.44 | 8.5 | 60 | 6 | 4 | WSW | 0 |  |  |  |
|  | P1 | 1300 | 28.72 | 8.8 | 56 | 8 | 4 | S | 0 | 10 | 10 | 2 |
|  | P2 | 866 | 28.72 | 8.8 | 56 | 8 | 4 | S | 0 |  |  |  |
|  | P3 | 150 | 28.56 | 8.8 | 56 | 8 | 4 | S | 0 |  |  |  |



|  | P4 | 82 | 24.53 | 8.3 | 68 | 2 | 1.7 | S | 0 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | P5 | 160 | 24.12 | 8.3 | 68 | 2 | 1.7 | S | 0 |  |  |  |
|  | P6 | 35 | 24 | 8.4 | 68 | 2 | 1.7 | S | 0 |  |  |  |
| 27-Aug | C1 | 326 | 29.89 | 8.2 | 72 | 6 | 4 | WSW | 0 | 0 | 20 | 55 |
|  | C2 | 75 | 29.22 | 8.3 | 72 | 6 | 4 | WSW | 0 |  |  |  |
|  | C3 | 91 | 28.61 | 8.4 | 72 | 6 | 4 | WSW | 0 |  |  |  |
|  | C4 | 23 | 27.78 | 8.3 | 72 | 6 | 4 | WSW | 0 |  |  |  |
|  | C5 | 548 | 29.56 | 8.3 | 72 | 6 | 4 | WSW | 0 |  |  |  |
|  | C6 | 33 | 28.83 | 8.2 | 72 | 6 | 4 | WSW | 0 |  |  |  |
|  | P1 | 155 | 27.56 | 8.3 | 72 | 8.2 | 5.1 | SW | 0 | 5 | 10 | 0 |
|  | P2 | 57 | 27.78 | 8.4 | 72 | 8.2 | 5.1 | SW | 0 |  |  |  |
|  | P3 | 9 | 27.44 | 8.4 | 72 | 8.2 | 5.1 | SW | 0 |  |  |  |
|  | P4 | 52 | 27.5 | 8.4 | 72 | 8.2 | 5.1 | SW | 0 |  |  |  |
|  | P5 | 11 | 27.56 | 8.3 | 72 | 8.2 | 5.1 | SW | 0 |  |  |  |
|  | P6 | 40 | 27.83 | 8.4 | 72 | 8.2 | 5.1 | SW | 0 |  |  |  |
| 28-Aug | C1 | 727 | 28.72 | 8.3 | 81.5 | 6.4 | 5.5 | NNW | 0 | 0 | 2 | 40 |
|  | C2 | 46 | 30.7 | 8.3 | 81.5 | 6.4 | 5.5 | NNW | 0 |  |  |  |
|  | C3 | 44 | 28.44 | 8.3 | 81.5 | 6.4 | 5.5 | NNW | 0 |  |  |  |
|  | C4 | 24 | 28.5 | 8.3 | 81.5 | 6.4 | 5.5 | NNW | 0 |  |  |  |
|  | C5 | 548 | 29.28 | 8.4 | 81.5 | 6.4 | 5.5 | NNW | 0 |  |  |  |
|  | C6 | 72 | 30.89 | 8.4 | 81.5 | 6.4 | 5.5 | NNW | 0 |  |  |  |
|  | P1 | 32 | 28.67 | 8.1 | 74.84 | 7.1 | 4.9 | WSW | 0 | 0 | 0 | 0 |
|  | P2 | 16 | 28.22 | 8.3 | 74.84 | 7.1 | 4.9 | WSW | 0 |  |  |  |
|  | P3 | 9 | 28.11 | 8.3 | 74.84 | 7.1 | 4.9 | WSW | 0 |  |  |  |
|  | P4 | 10 | 28.17 | 8.2 | 74.84 | 7.1 | 4.9 | WSW | 0 |  |  |  |
|  | P5 | 16 | 28.33 | 8.2 | 74.84 | 7.1 | 4.9 | WSW | 0 |  |  |  |
|  | P6 | 15 | 28.33 | 8.3 | 74.84 | 7.1 | 4.9 | WSW | 0 |  |  |  |
| 29-Aug | C1 | 225 | 27.72 | 8.3 | 65.84 | 2 | 1.4 | N | 0 | 0 | 25 | 75 |


| C2 | 365 | 27.78 | 8.2 | 65.84 | 2 | 1.4 | N | 0 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C3 | 248 | 27 | 8.3 | 65.84 | 2 | 1.4 | N | 0 |  |  |  |
| C4 | 225 | 27.72 | 8.3 | 65.84 | 2 | 1.4 | N | 0 |  |  |  |
| C5 | 144 | 28 | 8.4 | 65.84 | 2 | 1.4 | N | 0 |  |  |  |
| C6 | 387 | 27.56 | 8.2 | 65.84 | 2 | 1.4 | N | 0 |  |  |  |
| P1 | 105 | 27.44 | 8.2 | 65.12 | 2.6 | 2 | NW | 0 | 4 | 22 | 22 |
| P2 | 16 | 27.5 | 8.2 | 65.12 | 2.6 | 2 | NW | 0 |  |  |  |
| P3 | 14 | 27.44 | 8.3 | 65.12 | 2.6 | 2 | NW | 0 |  |  |  |
| P4 | 9 | 27.33 | 8.3 | 65.12 | 2.6 | 2 | NW | 0 |  |  |  |
| P5 | 461 | 27.67 | 8.2 | 65.12 | 2.6 | 2 | NW | 0 |  |  |  |
| P6 | 19 | 27.22 | 8.1 | 65.12 | 2.6 | 2 | NW | 0 |  |  |  |

